Activation of the Mercury Laser: A Diode-Pumped Solid-State Laser Driver for Inertial Fusion A.J. Bayramian, C. Bibeau, R.J. Beach, J.C. Chanteloup, C.A. Ebbers, K. Kanz, H. Nakano, C.D. Orth, S.A. Payne, H.T. Powell, K.I. Schaffers, L. Seppala, K. Skulina, L.K. Smith, S.B. Sutton, and L.E. Zapata U.S. Department of Energy This article was submitted to Optical Society of America Advanced Solid State Lasers Conference, Seattle, WA, January 2001, January 28-31, 2001 **September 25, 2000** #### **DISCLAIMER** This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes. This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be made before publication, this preprint is made available with the understanding that it will not be cited or reproduced without the permission of the author. This work was performed under the auspices of the United States Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48. This report has been reproduced directly from the best available copy. Available electronically at http://www.doc.gov/bridge Available for a processing fee to U.S. Department of Energy And its contractors in paper from U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 Telephone: (865) 576-8401 Facsimile: (865) 576-5728 E-mail: reports@adonis.osti.gov Available for the sale to the public from U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone: (800) 553-6847 Facsimile: (703) 605-6900 E-mail: orders@ntis.fedworld.gov Online ordering: http://www.ntis.gov/ordering.htm OR Lawrence Livermore National Laboratory Technical Information Department's Digital Library http://www.llnl.gov/tid/Library.html # Activation of the Mercury Laser: A diode-pumped solidstate laser driver for inertial fusion A.J. Bayramian, C. Bibeau, R.J. Beach, J.C. Chanteloup*, C.A. Ebbers, K. Kanz, H. Nakano**, C.D. Orth, S.A. Payne, H.T. Powell, K.I. Schaffers, L. Seppala, K. Skulina, L.K. Smith, S.B. Sutton, and L.E. Zapata Lawrence Livermore National Laboratory 7000 east Ave. Livermore, CA 94550-9234 USA Phone: (925)424-3802, FAX: (925)423-6195, Email: bayramian1@llnl.gov * CEA, Bordeaux, France ** Kinki University, Japan **Abstract**: Initial measurements are reported for the Mercury laser system, a scalable driver for rep-rated high energy density physics research. The performance goals include 10% electrical efficiency at 10 Hz and 100 J with a 2-10 ns pulse length. © 1999 Optical Society of America OCIS codes: (140.3580) Solid State Lasers; (140.3280) Laser Amplifiers #### I. Introduction The Mercury laser system design is based on achieving a scalable architecture for inertial fusion as described in a theoretical paper by Orth and Payne[1] that examines the necessary technological and economic requirements for an inertial fusion power plant to be viable. To achieve the goals of 10 % electrical efficiencies and 10 Hertz operation, three major technologies had to be developed to enhance the current technology in high power laser fusion drivers: large-scale high performance diode lasers, high speed gas cooling of the gain media, and Yb³⁺:Sr₅(PO₄)₃F (Yb:S-FAP) crystal amplifiers. #### II. Architecture The Mercury laser system has been designed to minimize damage and create a scalable architecture. The diode array packaging drove the design in the pump delivery design to accommodate the 55° angle of pump light emission. The "backplane' was split into two elements to allow for the passage of the 1047 nm extraction beam through the middle as shown in Fig. 1. This design minimizes the number of optics in the beam line thereby lowering the overall B-integral of the laser extraction, while maximizing the pump transport efficiency at the current diode power and divergence. The arrangement of the diode array "tiles" on the backplane delivers the light to the amplifier by means of Fig. 1. The new architecture design for the Mercury laser shows a split backplane design employing V-BASIS diode arrays, and an imaging lens position near to amplifiers to avoid high frequency beam modulation that could cause laser damage. a hollow lens duct and optical homogenizer whose lengths were optimized for transport efficiency and homogeneity at the amplifiers. Ray tracing was used to find the optimal configuration of the tiles with the result being an arrangement of 7 tiles wide by 5 tiles high in each half of the split backplane providing the optimal transport efficiency and homogeneity of 78% at the first amplifier slab. The telescope lenses are close to the relay image planes (located in the amplifiers) in order to minimize incident beam modulation caused by diffraction of the quasi-flat-top extraction beam from the image plane location. This is especially important given the thermal and static phase distortions of the S-FAP amplifiers at this relatively high repetition rate. Likewise, the output telescope undergoes magnification to lower the fluence of the beam at the output lens where the diffracted beam modulation is large. Extensive ghost and amplified spontaneous emission (ASE) analysis was performed, validating the current architecture and setting constraints on optical quality and surface reflectivity. The ytterbium doped S-FAP slabs will be slightly wedged and will have 1-2 degree canted edges to help suppress parasitics, etalon effects in the transmitted wavefront, and nonlinear losses such as stimulated Brillouin and stimulated Raman scattering. ### III. Crystal Growth Recent breakthroughs have been made in the growth of the ytterbium doped strontium fluorapatite (S-FAP) crystals. Current growths have produced crystals free of major defects (Fig. 2) at a size that would allow 1/2 scale slabs to be optically bonded together to achieve full-scale amplifier slabs[2]. These Czochralski grown crystals have been plagued by a wide variety of defects including: cracking, cloudiness, bubble core defects, and grain boundaries or slip dislocations³. Fig. 2 A defect free rectangular rod (9 x 10 x 57 mm) cut from a recent growth. Recently, two new defects were discovered: anomalous absorption and crystal inclusions or asteration, which are both related to the ytterbium dopant. Anomalous absorption is caused by ytterbium doping into an alternate site in the lattice, which produces a spectrum similar to ytterbium doped phosphate glass. The alternate site is thought to be the A_{II} site, which is nine coordinate oxygen polyhedron, associated with the PO₄ groups. This defect appears to be dependant upon the orientation of the seed from which the boule grows as well as the thermal gradient the growing boule experiences. Changes in these growth parameters affect the growth facet interface as well as the conduction of ions along channels in the crystal lattice. The crystal inclusions are caused by the incorporation or growth of ytterbium rich micro crystals into the outer edge of the boule. This defects seems to be mitigated by careful choice of thermal gradients during growth and an atmosphere surrounding the crucible that minimizes solid particulates of evaporated components, such as SrF₂, falling back into the melt. #### IV. Diode Lasers A 23-bar monolithic diode laser package was developed for the Mercury Laser, referred to as Bars And Springs In Slots (V-BASIS)[3], where microlensed diodes are mounted to a V-groove etched silicon wafer which is then bonded to a Molybdenum block for structural support, and then mounted to a water cooled copper backplane (see Fig. 3). Fig. 3 The V-BASIS diode backplane assembly showing the tiles, which hold 23 diode bars, are modular, and can be replaced individually. The electrical feed-throughs and coolant channels are located through the backplane itself to minimize dead space across the array. The V-groove architecture balances the trade off between two competing problems for high power diode arrays for inertial fusion energy (IFE). High peak irradiance is desirable which leads to compact diode spacing. However, the diode spacing must be kept to some minimum spacing to accommodate the 1 mm cavity length of the bars. The package must be consistent with our low duty factor (1%) and the need for low cost packaging (6624 diode bars in the system). The V-Basis design, which balances both of these requirements and allows for compact mounting onto the copper backplane cooler. One full back plane delivers up to 640 kW of peak power in a 750 μs pulse with a divergence of 1° in the fast axis, 10° in the slow, and a 6 nm bandwidth. Recent experiments based on Coherent bars show these diodes can operate at a peak power up to 150 W per bar at an electrical efficiency of at least 45% per bar. Experimental life tests of a 23 bar V-BASIS tiles at 10 Hz yields a lifetime of greater than 10^8 shots. #### V. Activation Initial activation included investigation of several key components in the system. Support equipment was activated and the resulting vibrations measured. After isolation of the gas recirculator via bellows, the vibration at the table dropped to acceptable levels for laser system stability and beam pointing. The amplifier slabs are mounted into aerodynamic vanes[4] that accelerate the gas to produce turbulent flow across the amplifier slabs for maximum cooling, and then decelerate the gas with a minimum of vibration. The pressure balance across the 8 gas channels in an amplifier head was found to be an average of 0.775 psi pressure drop with maximum variations of +0.056 and -0.052 psi, which is adequate to preclude formation of wake disturbances as the flows merge at the trailing edge of the vane. Thermal modeling of the pump delivery shows that with gas cooling, the only major wavefront distortion is tilt due to heating of the gas as it traverses the amplifier. Initial gain experiments were conducted on the system by operating a partial diode array at 890 nm to allow efficient wing pumping of Nd:glass surrogate slabs. The small signal gain of an amplifier head as well as the pump uniformity can be seen in Fig. 4. Only 1/4 of the backplane was active for these experiments, which accounts for the asymmetry in the gain. The small signal gain was sampled at various points across the 3 x 5 cm aperture using an attenuated Nd:YLF laser at 1053 nm to match the gain peak in Nd:glass. An energetics model of the system agrees with the measured small signal gain. Currently 80 23-bar tiles have been fabricated with a full backplane expected by early October, which will allow experiments validating gain uniformity and wavefront error modeling. The backplane will be used to pump one amplifier head of Nd:glass slabs, allowing demonstration of half-Mercury while the S-FAP slabs continue to be developed. The front end for this laser system is a Continuum laser (model) modified with an additional double pass amplifier to provide 500 mJ, 16 ns, single mode pulses at 10 Hz. Optics for the half-Mercury system have all been designed, ordered, and are currently being fabricated. Upon assembly, the half-Mercury system is expected to deliver 10 J at 10 Hz using the Nd:glass surrogate gain media. At this time the first full scale slab of Yb:S-FAP is expected by January 2001. Fig. 4 Single pass wavefront error is shown for the seven-slab, gas-cooled, amplifier. Only one quadrant was pumped with 400 diode bars operating at 3 Hz, 750 ms, 100 amperes. The extraction beam footprint is depicted by the dashed line. We would like to thank Mark Emanuel and Jay Skidmore for their work developing the laser diodes. This work was performed under the auspices of the U.S. Department of Energy by the University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48. ## VI. References - C. D. Orth, S. A. Payne, and W. F. Krupke, "A diode pumped solid state laser driver for inertial fusion energy," *Nuc. Fus.* 36, 75-116, (1996). - A.J. Bayramian, C. Bibeau, K.I. Schaffers, J.K. Lawson, C.D. Marshall, and S.A. Payne, "Development of ytterbium doped Sr₅(PO₄)₃F for the Mercury Laser Project," in *OSA Trends in Optics and Photonics Series*, M.M. Fejer, H. Injeyan, U. Keller, ed(s)., Vol. 26 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1999), 635-641. - J.A. Skidmore, B.L. Freitas, J. Crawford, J. Satariano, and others, "Silicon monolithic microchannel-cooled laser diode array," *Appl. Phys. Lett.*, 77, 10-12, 2000. - C.D. Marshall, L.K. Smith, S. Sutton, M.A. Emanuel, K.I. Schaffers, S. Mills, S.A. Payne, and W.F. Krupke, "Diodepumped gas-cooled-slab laser performance," in *OSA Trends in Optics and Photonics Series*, S.A. Payne, C. Pollock, ed(s).,Vol. 1 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1996), 208-212. | University of California | | | |--|--|--| | Lawrence Livermore National Laboratory | | | | Technical Information Department | | | | Livermore, CA 94551 | | | | | | | | | | | | | | | | | | |